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LETTER TO THE EDITOR 

Long-time versus short-time behaviour of a system of 
interacting Brownian particles 

W Hess and R Klein 
Universitat Konstanz, Fakultat fur  Physik, D-7750 Konstanz, West Germany 

Received 10 October 1979 

Abstract. A Mori-type transport equation for the dynamical structure factor S(k ,  t )  for a 
system of charged Brownian particles is solved in a mode-mode coupling approximation 
within the OCP model. The agreement with recent light scattering experiments on the 
difference between the long-time and the short-time decay of S ( k ,  t )  in systems of 
polystyrene spheres is satisfactory. 

The dynamical properties of systems of interacting Brownian particles have been 
studied extensively in recent years, particularly by light scattering (Chu 1979). A 
widely used system consists of polystyrene spheres of several hundred A radius in 
aqueous solution, where the spheres are highly charged. As a result there is a 
long-range interaction, which is in most cases the dominant interaction. Measurements 
of the static structure factor S ( k )  yield liquid-like behaviour, characterised by a 
pronounced peak in S ( k )  (Brown et a1 1975). The dynamical properties, as revealed by 
light scattering, are determined by the autocorrelation function of the concentration 
fluctuations. This function, the dynamical structure factor S ( k ,  t ) ,  has been found 
experimentally to be of non-exponential form. Therefore, the dynamics of this system 
cannot in general be represented by one effective diffusion coefficient. In particular, it 
was found that the long-time decay of S(k ,  t )  is appreciably slower than the short-time 
decay, and that this difference in addition depends on k (Brown et a1 1975, Pusey 1978, 
Dalberg et a1 1978, Griiner and Lehmann 1979). 

The purpose of this Letter is to show that the inclusion of memory effects in the 
dynamics can explain this behaviour. Starting from the Mori transport equation for 
S ( k ,  t )  the memory effects are treated in a simple mode-mode coupling approximation. 
The system of interacting charged particles is described by a one-component plasma 
(OCP) which enables us to calculate the memory function explicitly for all times and for 
small and large values of k, compared to k,,,, the position of the main peak in S ( k ) .  

Starting from the Smoluchowski equation for the distribution function P({R,}, t )  for 
the coordinates R, of N interacting Brownian particles, one can derive a memory 
equation for the dynamical structure factor 

S ( k ,  t )  = (6c(k,  t )&(-k,  O)) ,  (1) 
Sc(k, t )  being fluctuations around the mean concentration c. The average in (1) is 
defined by 
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where UN({&}) is the interaction potential. The Mori-type memory equation is, 
neglecting hydrodynamic interactions (Ackerson 1978, Dieterich and Peschel 1979), 

t > 0 .  
Dok2 aS(k, t )  = -- S ( k ,  t )  +& jo‘ dt‘ M ( k ,  t - t ’ )S(k,  t’) 
S ( k )  

(3) 

Do is the diffusion constant at infinite dilution, S ( k )  = ( l / N ) S ( k ,  t = 0 )  = 1 - c h ( k )  and 
the memory function is given by 

1 
MW, t )  = ( ~ ( k ,  {RA exp - f i l ) f o ( { ~ , ~ l ~ ( - k ,  {R,})) .  (4) 

F ( k ,  { R d )  = ( 1  - P 1 ) L m , } ) ~ c ( k ) .  

The random forces F are given by 

( 5 )  

The projection operator Pl projects a dynamical variable onto the subspace of 
concentration fluctuations S c ( k ) :  

1 
PI( * .  .)=- (( * . . ) Sc( -k ) )  Sc (k )  

N S ( k )  
and i o ( {R , } )  is the Smoluchowski operator: 

ii denotes the Hermitian adjoint of io. 
The memory function, equation (4), is now calculated in a mode-mode coupling 

approximation. The whole subspace orthogonal to the subspace which is spanned by 
the concentration fluctuations Sc ( k )  is approximated by taking into account only 
bilinear products like Sc(k )  Sc(k’) .  Defining a projector P2, which projects onto these 
bilinear products of concentration fluctuations, as 

A( 1 . * ) = 2 N 2 ( 2 , i r ) 3  I d3k‘((.  . . ) S c ( - k / 2 + k 1 ) 6 c ( - k / 2 - k ’ ) )  

A S ( k / 2  + k’)S(k /2  - k ’ )  ’ 

our approximation consists of writing 1 -PI = $2 in equations (4) and ( 5 ) .  As a result, 
M ( k ,  t) can be written as 

g ( k ,  k’)g( - k ,  k ” )  
S(3k - k’)S($k + k’)S(3k - k”)S($k  + k”)  v2 I d3k’ I d3k” 4 N  ( 2 ~ ) ~  M ( k ,  t )  = 

x C ( k ,  k’ ,  k“,  t )  ( 9 )  
where 

g ( k ,  k‘)  = - ~ D o k .  [ ($k  + k ‘ ) h ( $ k  + k ’ ) + ( $ k  - k ‘ ) h ( $ k  - k ’ ) ]  
1 

C(k ,  k‘ ,  k”,  t )  = ~ ( 6 c ( $ k  + k‘)Sc($k - k’)  exp [L^o((R,})t] Sc( -4k  + k”)Sc ( - ik  - k ” ) ) .  

(11) 
N 
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A Gaussian factorisation of C ( k ,  k ' ,  k", t )  results in 

[g(k '  kx)12  R (4 k + kx,  t)R (4 k - kx, t )  
1 k 3  M ( k ,  t )  = - 7 I d3x 

2c (27r) S(i k - k x ) S ( i k  + k x )  

where R ( k ,  t )  = S ( k ,  t ) / S ( k ) .  
In order to proceed, an explicit expression is needed for the statics of the system, 

described by S ( k ) .  As a model of the system we use OCP, which should be an adequate 
description outside the immediate neighbourhood of k = 0. Denoting the charge on 
one macroparticle by Q and the charges on the counter-ions (of concentrations c j )  by qi, 
the Debye length of the system is 

But since qJ << Q, we have A = A B [ 1  +O(qJ/Q)]  with 
- 1 / 2  

A B = ( T Q c )  4.rrp 2 'K - 1  

for the screening length of the macroparticles alone. For k > KqJ/Q we may therefore 
treat the counter-ions as a homogeneous background. The resulting system is an OCP, 
characterised by the plasma parameter = Q2P/(Ea)-', where a is the mean distance 
between macroparticles and E is the dielectric constant of the solvent. 

The plasma is only capable of performing overdamped oscillations, since the starting 
point of the present treatment, the Smoluchowski equation, already assumes that the 
momenta of the Brownian particles have their equilibrium values due to the frequent 
encounters with the solvent particles. The overdamped plasma frequency is vP = 
Mw;/fo =  DO^', where = 4,rrQ2c(~M)-' is the ordinary plasma frequency, M is the 
mass of a macroparticle andfo is the friction constant. The structure factor S ( k )  of OCP 
can be written as 

where the first factor is the Debye-Hiickel expression, valid for r<< 1. For very small 
k ,  Q ( k )  = 1 for all r (Vieillefosse and Hansen 1975) whereas for k > k,,, we assume 
Q ( k )  = 1. The function Q ( k )  describes the peak structure of S ( k ) ,  but explicit forms of 
Q ( k )  will not be needed in the limiting cases which we study. 

We now evaluate M ( k ,  t )  for klk, , ,  << 1 and for k / k , , ,  >> 1 for OCP. In the first case 
(klk, , ,  << 11, g ( k ,  k x )  = -D0k2+ O ( k 3 )  and 

k  ̂ = k / k .  k 2  
S ( i k  - k x )  = 7 (i - k^ . x + x') + O ( k 3 )  

K 

For the functions R ( k ,  t )  in (12) the lowest-order approximation from equation (3) is 
used, in which memory effects are neglected, since M is at least O(k3) .  Therefore, in the 
integral, equation (2), R(0,  t )  = exp ( -Do~21tl) .  The result is 

~ ( k ,  t )  = ~ ( k ,  0) exp ( -  2 ~ ~ ~ ~ 1 t l )  

~ ( k ,  0) = A D;  K 4  - 

(17) 

k / k m a x  << 1. (18) 
k 3  
c 



L8 Letter to the Editor 

With this expression for the memory function, the solution of equation ( 3 )  leads to a 
normalised dynamical structure factor consisting of two exponentials: 

where the relaxation times are 

and the weight of the two contributions to R(k,  t )  is determined by 

Furthermore: 

1 “  21r 
Dok l o  16 f i ( k )  =2 dtM(k,  t )  = - k a r  

gives the dependence on concentration, scattering angle and charge on the macro- 
particles The mean distance a between the macroparticles is related to k,,,. We use 
an empirical relation a = 5 . 2 5  k,:, (Gruner and Lehmann 1979) .  In figure 1 we have 
plotted In R ( k ,  t )  as a function of v,t for r = 1 for different values of k/k , , ,  < 1 .  The 
memory effects for k # 0 lead to a slower decay of R(k,  t )  with increasing t. 

Let us now consider the opposite limiting case, k >> k,,,. To lowest order in 
( k / k m a X ) - ’  we put S ( k )  = 1 in ( 9 )  and (10 ) .  For k >> k,,, the correlation function R(k,  t )  
to be used in ( 1 2 )  will be single-particle-like: 

R(k,  t )  = exp( - D o k 2 / t l )  ( k  >>kmax) ( 2 3 )  

Figure 1. Reduced dynamical structure factor, equation (19), as a function of v,t for 
k / k , , , = 0 ; 0 ~ 1 ; 0 ~ 2 ; 0 ~ 3  a n d r = l .  
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so that, to lowest order in ( k / k m a x ) - ' ,  

d3x{k. ( i k + k x ) [ l - S ( & k + k ~ ) ] } ~  exp [--(i+2x2)D0k21t1]. (24) 

With the assumption Q ( k  >> kmax) = 1, 

exp (--2x2 D0k2Jtl). 
k 3  1 

M ( k ,  t )  = 1 2 d 2 D ;  - exp ( -$D0k21tj) 
U 

(25) 

It should be noted that this expression is not exponential in time; asymptotically it 
behaves as I - ~ ' ~  exp (-4 D0k2t).  From (25) one obtains 

1 "  
f i ( k )  = M ( k ,  t )  dt = 0.86 r2(ku)- '  = 0.16 r 2 ( k / k m a X ) - ' .  (26) 

In the present limit f i ( k )  - k- ' ,  whereas f i ( k )  - k for k << k,,, (equation (22)). 
Defining a mean relaxation time for R ( k ,  t )  by 

00 -1 

~ ( k ) - l  = R ( k ,  0) ( dtR(k ,  I)) (27) 
0 

one finds, using ( 3 )  and (25), ~ ( k ) - l  =D0k2(1  -&?(k)). Since, according to 
(26), f i ( k )  - k - ' ,  ~ ( k ) - '  approaches Dok2 for k >> k,,,, which is an U posteriori 
justification for equation (23). 

Comparing the present results with experiments (Gruner and Lehmann 1979) we 
find the qualitative agreement concerning the k dependence of k ( k )  for both limiting 
cases. For a quantitative comparison with experiment the value of the plasma 
parameter is needed. According to (19)-(22) the first cumulant for k + 0 is given by 
3 r / u 2 .  For the systems used in figure 2, more recent experiments yielded r-2 
(F Gruner and W Lehmann 1979 private communication). Using this value of r we 
have plotted our results (22) and (26). The agreement at large k is very satisfactory, 
whereas at low k the theoretical value is too large; r = 1 would be a better fit. Although 

1. 

- 
-?( 
I 

'S 

0.1 
1 10 

k / k m a x  

Figure 2. Comparison of theoretical results, equations (22) and (26), with experiments 
(Gruner and Lehmann 1979). Full lines correspond to r = 2 and broken line is equation 
(22) for r = I .  



L10 l e t te r  t o  the Editor 

these values for r still correspond to fairly strong coupling, they are surprisingly small 
for a system with a pronounced liquid-like structure factor. Possible reasons for this are 
the neglect of ladder corrections in our mode-mode coupling treatment and of the 
hard-core interaction. Ladder corrections are known to be important for a proper 
description of hydrodynamics. The hard core, on the other hand, will certainly 
contribute to the liquid-like structure, whereas our treatment of OCP uses point particles 
only. A further improvement is expected from an inclusion of hydrodynamic inter- 
actions. 

Disregarding the complications just mentioned, we have shown that a simple 
mode-mode coupling treatment of overdamped OCP as a model for charged Brownian 
particles leads to non-exponential dynamical structure factors due to a coupling of the 
overdamped plasma oscillations to their first harmonics. 

We would like to thank F Griiner and W Lehmann for stimulating discussions and 
providing us with their experimental results prior to publication. 
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